

Via Pisa, 5/7 – 37053 Cerea (VR) – Italy Tel. +39 0442 410280 – Fax +39 0442 418090 info@zeta-lab.it – www.zeta-lab.it C.F./P.IVA 02984950788 – Cap. Soc. € 80.000 i.v. R.E.A. c/o C.C.I.A.A. Verona 376649

RAPPORTO DI PROVA N. 033-2017-CR

UNI EN ISO 354:2003 MISURA DELL'ASSORBIMENTO ACUSTICO IN CAMERA RIVERBERANTE

Luogo e data di emissione: Cerea (VR), 22/05/2017

Committente: Pugi RG SRL

Indirizzo Committente: Via Garibaldi n° 33B – 51037 Montale (PT), Italia

Data della fornitura del campione: 3/04/2017

Provenienza del campione: Pugi RG SRL

Data della realizzazione del campione: N/A

Campione installato in laboratorio da: Z Lab S.r.l. (campionamento a cura della committenza)

Data dell'esecuzione della prova: 02 Maggio 2017

Luogo della prova: Z Lab S.r.l. – Via Pisa, 5/7 – 37053 Cerea (VR) - Italia

Denominazione del campione: Il campione sottoposto a prova è denominato "TREVI"

LAB N° 1416

REDATTO	VERIFICATO	APPROVATO
Antonio Scofano	Antonio Scofano	Antonio Scofano

Descrizione del campione

Il campione oggetto della prova è denominato "Trevi". Esso è composto al 100% Poliestere FR Riciclato, e peso pari a $630 \pm 5\%$ gr/mtl.

Condizioni di montaggio

Il provino è stato posato all'interno della camera a terra.

La denominazione di montaggio eseguita è di Tipo A in accordo con la UNI EN ISO 354.

Di seguito si riportano le caratteristiche tecniche del prodotto testato (**):

Lunghezza (mm)	Larghezza (mm)	Superficie acustica utile (m²)	Peso (gr/mtl)	
2900	3700	10,73	630	

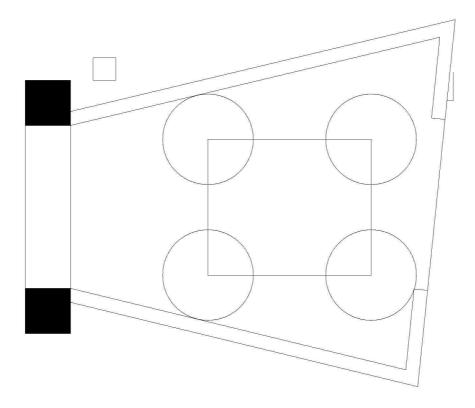
^(*) dati nominali forniti dal produttore

^(**) dati misurati mediante campionamento sull'elemento di prova

Schemi e immagini del campione

La prova è stata eseguita non appena terminato l'allestimento del campione.

Riferimenti normativi


UNI EN ISO 354:2003	Acustica - Misura dell'assorbimento acustico in camera riverberante.
UNI EN ISO 11654:1998	Acustica - Assorbitori acustici per l'edilizia - Valutazione dell'assorbimento acustico.
ASTM C423 – 09a	Metodo di prova standard per l'assorbimento acustico e i coefficienti di assorbimento acustico con il metodo della camera riverberante.

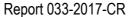
Descrizione degli ambienti di prova

La struttura di prova è realizzata in cemento armato, completamente isolata dal pavimento del laboratorio mediante supporti antivibranti. È costituita da una camera riverberante di forma irregolare e priva di partizioni tra loro parallele.

Le caratteristiche dimensionali sono:

Dimensioni camera riverberante (L x W x H medie))	770 X 560 X 370 cm
Billionolorii camora nvoiboranto (E x vv x 11 modio)	, I	110700070100111

Schema della camera riverberante.



Strumentazione di prova

Strumento	Marca e Modello	N. serie
Fonometro	LARSON DAVIS L&D 2900B	1080
Microfono	G.R.A.S. 40AQ	204027
Preamplificatore	LARSON DAVIS L&D PRM900C	1267
Calibratore	LARSON DAVIS L&D CAL200	3852
Sorgente omnidirezionale	LOOK LINE D303	SM900126
Termoigrometro	DELTA OHM HD2301.0	09020599
Sonda combinata temperatura e umidità	DELTA OHM HP472AC R	09028736
Flessometro	STANLEY POWERLOCK 33-442	13/946
Microclima con misuratore di pressione	DELTA OHM HD 32.1	MSP430F4618

Condizioni fisiche al momento della prova

	Camera riverberante
Volume	161,3 m³
Superficie totale	188,5 m²
Temperatura media durante T ₁	19,4 ± 1,0 °C
Umidità relativa media durante T ₁	43,2 ± 2,0 %
Temperatura media durante T ₂	19 ± 1,0 °C
Umidità relativa media durante T ₂	49 ± 2,0 %
Superficie campione	10,73 m ²

Metodologia di rilievo

La verifica dell'assorbimento acustico in camera riverberante si fonda sul principio della differenza tra i tempi di riverberazione misurati nella camera riverberante in presenza del materiale da testare al suo interno e nella situazione di camera vuota. La sorgente acustica (la quale produce rumore rosa) viene messa in funzione all'interno della camera riverberante in 3 posizioni differenti; il microfono è posizionato in 5 diversi punti dell'ambiente emittente e ricevente. Vengono effettuate 3 misure per ogni combinazione sorgente-microfono, per un totale quindi di 45 misurazioni nella camera vuota e 45 misurazioni con il materiale all'interno. Il tempo di integrazione è, per ciascuna misura, almeno 10 s.

Terminata la misurazione il tempo di riverberazione della stanza in ogni banda di frequenza è espresso dalla media aritmetica del numero totale dei tempi di riverberazione misurati. Il tempo di riverberazione medio della stanza senza e con il materiale al suo interno, rispettivamente T1 e T2 viene calcolato ed espresso usando almeno due cifre decimali.

Valutati i tempi di riverberazione medi si calcola l'area di assorbimento equivalente del provino, A_T, in metri quadrati usando la seguente formula:

$$A_T = A_2 - A_1 = 55,3 \cdot V \cdot \left(\frac{1}{c_2 T_2} - \frac{1}{c_1 T_1}\right) - 4 \cdot V \cdot (m_2 - m_1)$$

dove:

c₁: è la velocità di propagazione del suono nell'aria alla temperatura t₁;

c₂: è la velocità di propagazione del suono nell'aria alla temperatura t₂;

V: è il volume della camera di prova vuota in metri cubi;

T₁ e T₂: sono i tempi di riverberazione senza e con il materiale nella camera di prova;

m₁ e m₂: sono coefficienti di attenuazione che dipendono dalle condizioni climatiche della stanza al momento della prova.

Il coefficiente di assorbimento acustico α_s di assorbitori piani o di un insieme di oggetti deve essere calcolato usando la seguente formula:

$$a_s = \frac{A_T}{S}$$

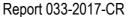
dove:

S: è l'area in metri quadrati occupata dal campione.

Si può quindi calcolare in accordo alla UNI EN ISO 11654 il coefficiente di assorbimento acustico pratico α_{pi} per ciascuna banda di ottava i come media aritmetica dei tre coefficienti di assorbimento acustico per bande di terzo di ottava α_{i1} , α_{i2} , α_{i3} all'interno dell'ottava:

$$a_{pi} = \frac{a_{i1} + a_{i2} + a_{i3}}{3}$$

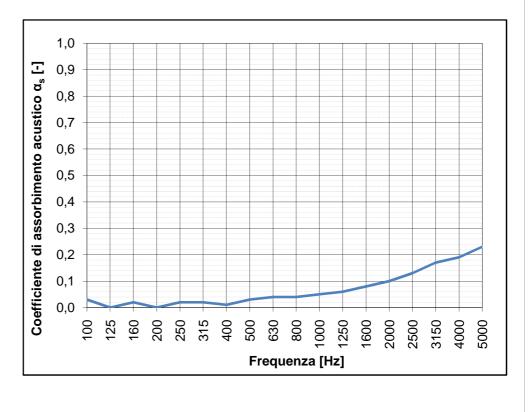
I valori di α_{pi} vengono utilizzati per calcolare il coefficiente di assorbimento acustico ponderato α_w partendo da una curva di riferimento che viene traslata a passi di 0,05 verso il valore misurato fino a quando la somma degli scostamenti sfavorevoli sia minore o uquale a 0,10; α_w viene definito come il valore della curva di riferimento traslata a 500 Hz.



LAB N° 1416

Valori misurati

f [Hz]	T ₁ [s]	T ₂ [s]	Α _Τ [m²]
Frequenza	Tempo di riverberazione T ₁ della camera vuota	Tempo di riverberazione T ₂ della camera con il provino	Area di assorbimento equivalente
100	5,48	5,19	0,27
125	4,30	4,27	0,04
160	5,60	5,38	0,20
200	5,86	5,85	0,01
250	6,48	6,25	0,15
315	6,30	6,06	0,17
400	5,58	5,44	0,13
500	5,33	5,04	0,28
630	5,65	5,22	0,38
800	5,30	4,95	0,35
1000	4,59	4,19	0,54
1250	4,47	4,06	0,59
1600	4,66	4,06	0,83
2000	4,43	3,77	1,03
2500	3,91	3,30	1,25
3150	3,26	2,71	1,65
4000	2,58	2,16	1,94
5000	2,09	1,76	2,30


Calcolo dell'assorbimento acustico in camera riverberante secondo la ISO 354

Descrizione dell'elemento di prova: Il campione oggetto della prova è denominato "Trevi". Montaggio A.

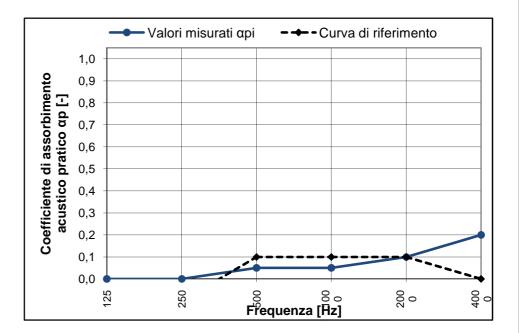
Composizione 100% Poliestere FR – (TR CS), Peso 630 ± 5% gr/mtl.

Area dell'elemento di prova: 10,73 m² Volume della camera riverberante: 161,3 m³

f [Hz]	α _S [-]	
Frequenza	Valori del coefficiente di assorbimento acustico	
100	0,03	
125	0,00	
160	0,02	
200	0,00	
250	0,02	
315	0,02	
400	0,01	
500	0,03	
630	0,04	
800	0,04	
1000	0,05	
1250	0,06	
1600	0,08	
2000	0,10	
2500	0,13	
3150	0,17	
4000	0,19	
5000	0,23	

Valutazione basata su risultati di misurazioni in laboratorio ottenuti mediante un metodo tecnico.

Report 033-2017-CR



Calcolo dell'assorbimento acustico in camera riverberante secondo le norme ISO 11654 e ASTM C423-09a Descrizione dell'elemento di prova: Il campione oggetto della prova è denominato "Trevi". Montaggio A.

Composizione 100% Poliestere FR – (TR CS), Peso 630 ± 5% gr/mtl.

Area dell'elemento di prova: 10,73 m² Volume della camera riverberante: 161,3 m³

f [Hz]	α _p [-]
Frequenza	Valori del coefficiente di assorbimento acustico pratico
125	0,00
250	0,00
500	0,05
1000	0,05
2000	0,10
4000	0,20

INDICI DI VALUTAZIONE STANDARD:

aw	0,1 - classe NC	Coefficiente di assorbimento acustico ponderato	UNI EN ISO 11654:1998
NRC	0,05	Noise Reduction Coefficient	ASTM C423 – 09a

Valutazione basata su risultati di misurazioni in laboratorio ottenuti mediante un metodo tecnico.

Responsabile di Laboratorio Ing. Antonio Scofano